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b Katholieke Universiteit Leuven, Department of Mathematics, Center for Plasma-Astrophysics, Leuven Celestijnenlaan 200B,

B3000 Belgium

Received 15 December 2004; received in revised form 21 February 2005; accepted 1 March 2005

Available online 23 May 2005
Abstract

We consider the second-order accurate numerical solution of general time-dependent hyperbolic conservation laws

over unstructured grids in the framework of the Residual Distribution method. In order to achieve full conservation of

the linear, monotone and first-order space–time schemes of (Csı́k et al., 2003) and (Abgrall et al., 2000), we extend the

conservative residual distribution (CRD) formulation of (Csı́k et al., 2002) to prismatic space–time elements. We then

study the design of second-order accurate and monotone schemes via the nonlinear mapping of the local residuals of

linear monotone schemes. We derive sufficient and necessary conditions for the well-posedness of the mapping. We

prove that the schemes obtained with the CRD formulation satisfy these conditions by construction. Thus the nonlinear

schemes proposed in this paper are always well defined. The performance of the linear and nonlinear schemes are eval-

uated on a series of test problems involving the solution of the Euler equations and of a two-phase flow model. We

consider the resolution of strong shocks and complex interacting flow structures. The results demonstrate the robust-

ness, accuracy and non-oscillatory character of the proposed schemes.

� 2005 Elsevier Inc. All rights reserved.

Keywords: Unstructured grids; Time-dependent problems; Residual distribution; Conservation; Space–time methods; Monotone

shock capturing; High-order schemes
1. Introduction

In this paper we propose high-order schemes for the discretization of systems of conservation laws lack-

ing a multidimensional conservative linearization [1]. Our primary interest is the approximation of
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time-dependent solutions containing strong interacting discontinuities. The development of robust high-or-

der schemes is a widespread research topic in the CFD community. Even if Finite Volume (FV) and Finite

Element (FE) methods are routinely used for fluid flow simulations, a margin for improvement is still pres-

ent especially with respect to accuracy and robustness on unstructured meshes. This justifies the study of

alternative techniques. Here, we consider schemes of the Residual Distribution (RD) or Fluctuation Splitting

(FS) class, emerged in the last decades as an alternative to theFV andFE approaches [2–8]. The interest

in RD stems from the possibility of combining the compactness of the stencil typical of continuous FE
methods with shock capturing capabilities which, as in FV schemes, do not require the addition of non-

linear dissipative operators to the discretization. Moreover, the schemes operate on arbitrary unstructured

meshes. The application ofRD to the solution of the steady Euler and Navier–Stokes equations has already

shown a great potential [2–15].

Some issues are however still to be solved to allow the use of RD to approximate weak solutions of time-

dependent systems of practical interest such as the Euler equations for gases in thermochemical equilibrium
or with more complex forms of thermodynamics, the MHD equations, two-phase flow models and the shal-

low-water equations, to cite some. Among these issues, the most relevant are, in our view, an efficient stable

and accurate extension of the method to the time-dependent case, a conservative formulation allowing to

handle general forms of thermodynamics, and the development of a well-understood procedure for the sys-

tematic construction of nonlinear high-order schemes yielding a stable and non-oscillatory approximation

of discontinuities. An overview of these issues is given in the following subsections.

1.1. Residual distribution for time-dependent problems

The use of RD for time-dependent simulations has seen a very strong progress in the last years and it is

still a very intense research topic. The main focus of the research is the construction of a framework within

which is possible to design discretizations retaining the residual character of the steady schemes, as well as

to design linear first-order schemes with stable and non-oscillatory shock capturing properties to be used as

a basis for the construction of nonlinear high-order schemes. It has been always known that in their basic

formulation RD schemes cannot be more than first-order accurate in time-dependent computations, due to

an inconsistent spatial discretization. Early attempts to cure this problem have resorted to a Petrov–

Galerkin ðPGÞ FE formulation of the schemes leading to the introduction of a Finite Elements mass-

matrix [16,17]. This approach has been shown to be very effective in the construction of linear second-order

schemes but it leaves open the issue of the construction of non-oscillatory discretizations, since the PG
analogy does not apply to linear positive RD schemes. Similarly, in [18–23] Caraeni and his collaborators

have presented schemes in which the time-derivative is consistently included in the definition of the residual.

The authors are able to construct in this way second-order schemes for time-dependent calculations. They

have also proposed an extension of their approach allowing to achieve third order of accuracy on struc-

tured meshes. As in the case of the PG formulation, this technique does not generalize to linear positive
schemes and hence it does not allow to construct non-oscillatory approximations of discontinuous solu-

tions. Both the PG schemes and the schemes of Caraeni can be shown to belong to a general family of dis-

cretizations making use of a FE-like mass-matrix consistent with the spatial discretization [24]. Two more

approaches can be found in the literature to apply RD schemes for unsteady simulations. The first relies on

the use of the residual distribution formulation of the Lax–Wendroff (LW) scheme [2,25–27]. Indeed, this

scheme can be shown to be second order in space and time on structured triangulations [27]. However, this

property has not been proved or verified on truly unstructured meshes on which most probably also the LW

scheme needs the introduction of properly constructed mass-matrix. Moreover, also in this case, the issue of
the construction of non-oscillatory schemes remains open. The study of consistent RD discretizations of

time-dependent problems has led at last to the space–time formulation of the schemes. Two different,

though similar in spirit, research lines have appeared in the literature. One is due to the work reported
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in [28–30] in which the authors have written the solution of the time-dependent problem as a sequence of

steady problems on space–time slabs discretized with space–time linear elements (triangles for 1D problems

and tetrahedra for 2D problems). The use of standardRD schemes in each space–time slab, allows to obtain

discretizations retaining all the properties of the steady schemes. The time-marching character of the pro-

cedure is guaranteed by the use of upwind RD schemes and by the satisfaction of a time-step constraint. In
the references, however, the authors propose a double-layer formulation in which, by solving at once for the

values of the unknown in two successive time levels, unconditionally monotone and stable linear schemes

can be designed. Although this approach allows to construct schemes with all the desired properties and

to immediately use all the numerical artillery developed for the steady case, it has the drawback of being

inherently complex and expensive due to the introduction of time as an additional independent unknown,

to the generation and storage of the space–time mesh, and to the need of solving for a number of unknowns

larger than the number of nodes in the spatial grid, even in its single-layer formulation. A space–time for-

mulation of residual distribution making use of prismatic space–time elements has been instead proposed in
[31–33]. In the references, the authors design both linear second-order and linear positive RD schemes for

time-dependent problems. As before, the space–time formulation allows to reuse all the numerical tools

developed for steady simulations. Moreover, the use of prismatic elements guarantees that the number

of unknowns is, in the basic formulation of the method, equal to the number of nodes in the grid. At steady-

state the schemes of [31–33] reduce to known RD discretizations. However, the linear first-order positive

schemes they propose are constrained by a time-step limitation. Using a double layer formulation similar

to the one introduced in [28–30], this limitation has been overcome in [32–34] where unconditionally mono-

tone and stable linear first-order schemes have been proposed. Note that the extension of the space–time
schemes of [28–30] to prismatic space–time meshes has been reported in [35]. The framework proposed

in [32–34] and [35] is at the moment the only one allowing to design schemes retain all the properties of

steady RD. In particular it allows to make use of the tools developed for steady calculations and to con-

struct linear and nonlinear non-oscillatory schemes in a natural and consistent way.

1.2. Conservative formulations of residual distribution

The issue of finding a general conservative formulation of residual distribution, stems from the fact that
the computation of discontinuous solutions free of numerical oscillations heavily relies on the use of the

first-order N scheme [12,36,37]. The problem is that this scheme makes extensive use of the non-conservative

quasi-linear form of the equations and cannot be conservative unless a multidimensional Roe linearization

is used for the flux Jacobians. Unfortunately, this linearization is only available on simplicial elements and

in the case of computations of flows of gases with simple thermodynamics [1]. This has limited the appli-

cation of RD mainly to the computation of flows of perfect gases on triangular (in 2D) and tetrahedral (in

3D) meshes.

The first attempts to solve this issue have been based on ad hoc corrections of a non-conservative
formulation of the scheme [38,39]. In the references, conservation is achieved by adding to the discrete

equations terms dependent on the discrete conservation error, thus correcting the non-conservative nat-

ure of the scheme. However, the way in which these corrections have to be included into the discret-

ization is somewhat arbitrary. A more consistent framework for the construction of conservative

variants of the N scheme has been proposed in [40]. In the reference, the authors propose a class of

non-conservative discretizations based on Gauss volume integration of the quasi-linear form in entropy

variables. Using the properties of the Gaussian integration, they are able to prove that their schemes

indeed converge to the correct weak-solutions of the differential problem. They show how to use their
approach to design an N scheme based on the adaptive quadrature of the quasi-linear form of the Eu-

ler equations in symmetrizing variables. This technique can be extended to any system of conservation

laws with a convex entropy extension, thus solving the problem of the application of RD in absence of
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a conservative linearization. The approach of [40] is based on sound mathematical arguments. Global

entropy stability on fine meshes can be shown for the N scheme proposed in the reference, while its L1
stability can be shown using a wave decomposition technique [41–43]. The numerical results confirm the

theoretical analysis performed in the paper. However, this technique has the drawback of being quite

expensive since the number of quadrature points needed to achieve a correct approximation of shocks
can be large. A simpler, yet effective, technique has been proposed in [44]. The idea is to approximate

directly the integral form of the equations to define the residual. In this way discrete conservation is

always guaranteed, provided that a consistency constraint is respected. The authors have introduced

the terminology CRD to denote their schemes, indicating that conservation is guaranteed by the defi-

nition of the residual as the contour integral of the fluxes on the boundary of the elements of the grid

as opposed to the LRD schemes for which conservation is guaranteed by the conservative lineariza-

tion. In the paper it is shown how to construct a conservative variant of the N scheme which does

not need a Roe linearization. When applied to the Euler equations, this CRD N scheme shows perfor-
mances identical to the LRD N scheme of [12]. Compared to the N scheme based on adaptive quad-

rature of [40], the CRD N scheme is more efficient and computationally cheaper due to the fact that a

few Gaussian points are needed on each edge of the grid elements while the flux Jacobians are evalu-

ated in a single state. No particular theoretical properties have however been proved for the CRD N

scheme. The application of this technique to the solution of the ideal MHD equations is shown in [44],

while its use to construct RD schemes on meshes composed of quadrilateral elements has been reported

in [45,46].

1.3. Nonlinear residual distribution schemes

The construction of high-order schemes for systems is yet another open problem. The success of the PSI

scheme of Struijs [9] for the solution of steady scalar advection is still far from being achieved for nonlinear

systems, and issues of robustness and generality are still to be solved. Different techniques can be found in

the literature. One of these is based on the combination of a linear second-order scheme with a linear po-

sitive scheme (usually the N scheme) through a Flux-Corrected-Transport (FCT) technique or through a

variant of this technique [17,24–27,47]. The main problem of this approach is that it generally shows a lack
of robustness and it is theoretically very unsatisfactory due to its non-compact character. A different way of

constructing nonlinearRD schemes is to blend locally the N scheme with a second-order linear scheme. The

local nature of the blending preserves the compact character of the schemes obtained in this way, while a

proper design of the blending function can guarantee both high order of accuracy and a non-oscillatory

approximation of shocks. The definition of this function is however not easy. An ad hoc definition, which

however has proved to be numerically very effective, is proposed in [12], while a more involved definition

based on positivity and entropy stability considerations can be found in [15]. These blended schemes are

very competitive in terms of accuracy with high-order finite volume schemes [15,42]. Nevertheless a more
robust and general approach has been proposed lately by Abgrall et al. in [33,41–43,48]. The basic idea of

the technique introduced in the references is to generate nonlinear schemes by locally mapping the residual

of a linear positive scheme. The nonlinearity is hidden into the definition of the mapping which has the

property of preserving the sign of its arguments, thus preserving positivity. The application of this tech-

nique to steady and time-dependent conservation laws has shown improved robustness and accuracy with

respect to the blending approach [41–43,33].

1.4. Scopes and structure of the paper

This paper is an attempt to deal with all the issues discussed in the previous subsections by combining,

analyzing and further developing some of the ideas present in the literature. We propose high-order
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schemes for the approximation of time-dependent conservation laws which are conservative and do not re-

quire a multidimensional Roe linearization. We further develop the space–time RD schemes of [31–

33,43,35] by providing a space–time CRD framework within which we construct conservative variants of

the first-order linear monotone space–time schemes presented in the references. The linear first-order

schemes obtained in this way show a very robust and non-oscillatory behavior in presence of strong discon-
tinuities and can be used to discretize general conservation laws and as a basis to construct nonlinear high-

order schemes. To this end, we analyze the technique proposed in [33,41–43,48] to construct nonlinear

schemes, underlining its limits of applicability and formulating conditions for its well-posedness. As we

show in the paper, these conditions are met by construction by the CRD linear schemes. Hence, the conser-

vative formulation solves simultaneously two problems: it provides conservative non-oscillatory first-order

schemes for general systems and it guarantees the well-posedness of the limiting proposed in [33,41–43,48],

allowing us to construct nonlinear, conservative, high-order non-oscillatory schemes for general systems.

The results presented in the paper show encouraging features of the schemes proposed: conservation, gen-
erality, robustness, oscillation free capturing of discontinuities and high resolution of complex flow

structures.

The paper is organized as follows. In Section 2 we give some definitions and introduce the notation used

in the sub-sequent sections. The review of RD and space–time RD schemes is done in Section 3. The con-

servative space–time CRD framework is finally introduced in Section 4. We then consider the construction

of nonlinear RD. The limiting procedure of [33,41–43,48] is analyzed in detail in Section 5, where the non-

linear schemes used in the computations are also introduced. Section 6 is devoted to the discussion of the

numerical results. We assess shock capturing capabilities, robustness and accuracy of linear and nonlinear
schemes on the solution of the Euler equations for a perfect gas. Finally, we show their application to a

system of conservation laws modeling homogeneous two-phase flow and lacking a conservative lineariza-

tion. We conclude the paper with a summary and some remarks.
2. Problem statement, definitions and labeling

In this section we introduce the notation used throughout the paper and give some basic definitions re-
lated to the mesh geometry, to the approximation of the unknowns and to the flux Jacobians. Even if a

review of the basics of residual distribution is done in Section 3, we assume the reader to be somehow famil-

iar with the work of [31–33,35]. The objective of this section is then to unify labeling and notation in order

to be able to present the work reported in the references.
2.1. Generalities

In this paper we consider the numerical approximation of unsteady solutions of systems of conservation
laws of the form
ou

ot
þr �FðuÞ ¼ 0 on X� ½t0; tf � � Rd � Rþ; ð1Þ
where u(x1, . . . , xd, t) is a vector of p conserved quantities,F ¼ ðF1; . . . ;FdÞ is the tensor of the conservative
fluxes and X� ½t0; tf � � Rd � Rþ the space–time domain on which we seek solutions of (1). Throughout the

paper we consider the two-dimensional case d = 2, implying (x1, x2, t) = (x, y, t) and F ¼ ðF;GÞ, but the
extension of the results to three dimensions is trivial. System (1) is supplemented with a set of boundary

conditions on oX and with an initial condition u(x, y, t0) = u0(x, y). We assume that (1) is hyperbolic in

time. As a consequence, rewriting the system in its quasi-linear form
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ou

ot
þ oF

ou

ou

ox
þ oG

ou

ou

oy
¼ 0; ð2Þ
the matrix
Kð~n; uÞ ¼ oF

ou
ðuÞnx þ

oG

ou
ðuÞny ¼

oF

ou
ðuÞ �~n ð3Þ
has a complete set of real eigenvalues and real linearly independent eigenvectors 8~n ¼ ðnx; nyÞ 2 R2. Diag-

onalization of matrix Kð~n; uÞ yields
Kð~n; uÞ ¼ Rð~n; uÞKð~n; uÞ Rð~n; uÞ
� ��1

; ð4Þ
where Kð~n; uÞ denotes the diagonal matrix of the eigenvalues of Kð~n; uÞ and Rð~n; uÞ the matrix of its right

eigenvectors. The choice p = 1, u = u and FðuÞ ¼ FðuÞ ¼~ku, leads to the case of linear scalar advection

with constant speed ~k, considered in Section 3. In this case, we simply have
Kð~n; uÞ ¼ kð~n; uÞ ¼~k �~n. ð5Þ
2.2. Mesh geometry

Consider an unstructured discretization of the spatial domain X composed by non-overlapping triangu-

lar elements. We denote the grid by sh, h being a reference element length (e.g. the largest element diameter),

and by T the generic triangle in sh. The area of T is denoted by jTj. Given a node j in an element T,~nj de-
notes the inward pointing vector normal to the edge of T opposite to j, scaled by the length of the edge (see

Fig. 1). For every node i in the mesh, Di denotes the subset of triangles containing i and Si is the median

dual cell obtained by joining the gravity centers of the triangles in Di with the midpoints of the edges meet-

ing in i (Fig. 1). The area of Si is denoted by jSij and given by
jSij ¼
X
T2Di

jT j
3

. ð6Þ
The temporal domain [t0, tf] is instead discretized by a sequence of M discrete time levels
{t1 = t0, t

2, . . . , tn, tn+1, . . . , tM = tf}. The space–time schemes will be introduced with reference to a generic

space–time slab X · [tn, tn+1]. The time-width of the slab is given by the time step
Dt ¼ tnþ1 � tn. ð7Þ
Fig. 1. Median dual cell Si and nodal normal ~nj.
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2.3. Variable and flux approximation

The numerical approximation of the unknown u on sh and in time is denoted by uh(x, y, t). Denoting the

continuous piecewise linear basis functions used in P1 Finite Element methods by Ni and introducing the

numerical approximations of u in space
unðx; yÞ ¼
X
i2sh

N iu
n
i ; unþ1ðx; yÞ ¼

X
i2sh

N iu
nþ1
i ; ð8Þ
on the space–time slab X · [tn, tn+1] we assume
uhðx; y; tÞ ¼ t � tn

Dt
unþ1 þ tnþ1 � t

Dt
un. ð9Þ
The numerical approximation of the fluxes, denoted by Fh, is given by [32–34]
Fh ¼ t � tn

Dt
Fðunþ1Þ þ tnþ1 � t

Dt
FðunÞ. ð10Þ
2.4. Flux jacobians

The jacobians used in the definition of the schemes are introduced here. With the notation of (3), we

define on the generic element T the matrix
Kj ¼
1

2
Kð~nj; �uÞ; ð11Þ
where �u is an average value of u over T. Not that, for simplicity of notation, we omit to use a superscript T

referring to the element in which Kj is defined, this being always clear from the context. We also introduce
the following multidimensional upwind parameters:
K�
j ¼ RjK

�
j ðRjÞ�1

; ð12Þ
where Rj ¼ Rð~nj; �uÞ, Kj ¼ Kð~nj; �uÞ=2 and K�
j is the diagonal matrix containing only the positive (resp. neg-

ative) entries of Kj. Because of the hypotheses made on the hyperbolicity of (1), the existence of K�
j is always

guaranteed. In the scalar case the upwind parameters become
kþj ¼ maxð0; kjÞ; k�j ¼ minð0; kjÞ; kj ¼
k �~nj
2

. ð13Þ
We also need to define the space–time analogs of the upwind parameters (12) needed for the space–time

schemes of [35]. Denoting the p · p identity matrix by I, we first introduce the following matrices:
eKj ¼
Dt
2
Kj þ

jT j
3

I; bKj ¼
Dt
2
Kj �

jT j
3

I. ð14Þ
The relation between the eKj and bKj matrices and the jacobians of the space–time flux ðF; uÞ can be found
in [35]. It can be easily verified that these matrices share with the Kj matrices (11) the same right and left

eigenvectors and one can write
eKj ¼ Rj
eKjðRjÞ�1

; bKj ¼ Rj
bKjðRjÞ�1 ð15Þ
with
eKj ¼
Dt
2
Kj þ

jT j
3

I; bKj ¼
Dt
2
Kj �

jT j
3

I. ð16Þ
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We define then the space–time multidimensional upwind parameters [35]
eK�
j ¼ Rj

eK�
j ðRjÞ�1

; bK�
j ¼ Rj

bK�
j ðRjÞ�1

; ð17Þ
where eK�
j and bK�

j are diagonal matrices containing only the positive (resp. negative) entries of eKj and bKj

respectively. In the case of scalar advection the previous definitions become
ekþ
j ¼ maxð0; ekjÞ; ek�

j ¼ minð0; ekjÞ with ekj ¼
Dt
2
kj þ

jT j
3

ð18Þ
and
bkþ
j ¼ maxð0; bkjÞ; bk�

j ¼ minð0; bkjÞ with bkj ¼
Dt
2
kj �

jT j
3

. ð19Þ
3. Residual distribution schemes

This section is devoted to the description of the basics of RD. We start with the simplified case of linear

constant advection
ou
ot

þ~k � ru ¼ 0 on X� ½t0; tf � � R2 � Rþ. ð20Þ
We first consider the case of steady advection (tf ! 1) and then we recall the space–time schemes on prisms

[31–33,35]. The extension to systems and nonlinear conservation laws is then discussed. The content of

these pages being far from exhaustive, the reader can refer to the extensive bibliography given in the intro-
duction for a more complete overview on RD.

3.1. Steady scalar advection

Consider the numerical solution of the steady limit of (20). The RD discretization procedure consists of

the three following steps [2]:

(1) In every element T 2 sh we compute the residual or fluctuation
/h ¼
Z
T

~k � ruh dxdy. ð21Þ
Taking uh = un (see Eq. (8)), the residual can be shown to be
/h ¼
X
j2T

kjunj . ð22Þ
(2) /h is distributed to (split among) the nodes of the element. The fraction of /h sent to node i 2 T is
denoted by /T

i and is referred to as the local nodal residual or distribution function. It is also customary

to define the distribution coefficients {bj}j2T:
bi ¼
/T

i

/h . ð23Þ
(3) The solution is updated according to the explicit iterative scheme
unþ1
i ¼ uni �

Dt
jSij

X
T2Di

/T
i ¼ uni �

Dt
jSij

X
T2Di

bi/
h. ð24Þ
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The properties of the discretization are determined by the choice of the distribution functions. The follow-

ing properties are relevant to our scopes:

Consistency. The local nodal residuals must respect the constraint
X
j2T

/T
j ¼ /h. ð25Þ
The consistency requirement can be equivalently expressed as
X
j2T

bj ¼ 1. ð26Þ
Linearity. A scheme is linear if
/T
i ¼

X
j2T

cijunj ð27Þ
with all the cij coefficients independent on the numerical solution.

Multidimensional upwinding. If node i is located upstream in a triangle with respect to ~k, then ki < 0. A

scheme is multidimensional upwind if
ki 6 0 ) /T
i ¼ 0. ð28Þ
Linearity preservation. Linearity preserving schemes preserve piecewise linear exact steady solutions of (20),

hence they are second-order accurate. In [15,42,48] is shown that in 2D, if the mesh is regular enough, a

sufficient condition for a RD scheme to be second-order accurate is that
/T
i ¼ Oðh3Þ; ð29Þ
which is obtained if the approximation of the fluxesFh ¼~kuh in (21) is at least second-order accurate and if

the distribution coefficients are bounded. As a consequence, if
lim
/h!0

bi/
h ¼ lim

/h!0
/T

i ¼ 0 () jbij < 1; ð30Þ
then the scheme is linearity preserving, hence second-order accurate.

Positivity. Making use of (27), we can rewrite the update (24) as
unþ1
i ¼ uni �

Dt
jSij

X
T2Di

X
j2T

cijunj . ð31Þ
A scheme is positive if
X
T2Di\Dj

cij 6 0;
X
T2Di

cii P 0; Dt
X
T2Di

cii 6 jSij. ð32Þ
Positive schemes respect a local discrete maximum principle [49] and are of fundamental importance for the

approximation of discontinuous solutions. We denote by CFL the ratio
CFL ¼
Dt
P

T2Di
cii

jSij
. ð33Þ
An analog of Godunov�s theorem for Residual Distribution [10,43,42,50] states that a linear scheme can-

not be simultaneously positive and linearity preserving. Nonlinear schemes are then needed to combine these

two properties.
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3.1.1. The linear positive N scheme

It is useful to introduce the linear positive scheme at the basis of our work. The so-called N scheme is

defined by the distribution function
/N
i ¼ kþi ðui � uinÞ; ð34Þ
where the inflow state uin is the linearly interpolated value of uh in the upstream point of intersection
between the streamline crossing element T and the element itself (see Fig. 2) and is given by [2]
uin ¼ �N�1
X
j2T

k�j uj; N ¼
X
j2T

kþj . ð35Þ
Note that introducing the outflow state uout (see Fig. 2)
uout ¼ N�1
X
j2T

kþj uj; ð36Þ
and using expression (22), one can easily show that [2]
/h ¼
X
j2T

kjuj ¼ Nðuout � uinÞ ¼
X
j2T

/N
j . ð37Þ
Hence the N scheme is consistent if the residual can be expressed as in (22), that is provided that we can use

the flux jacobians kj to compute /h. The N scheme, initially introduced by Roe [36,37], is multidimensional
upwind and positive under the constraint (see Eq. (32))
Dt
X
T2Di

kþi 6 jSij. ð38Þ
Being positive and linear, the scheme is not linearity preserving. Note also that the quantity N in (35) ap-

proaches zero as~k ! 0. Even though in this case /h ! 0 and /N
j ! 0 8j 2 T , and even if kjN

�1 and k�j N
�1

remain well behaved [15], care must be taken to avoid division by zero in this limit.

3.2. Time-dependent scalar advection

Consider now the solution of (20) in the time-dependent case. Given the nodal values of the numerical

solution at time tn, funi gi2sh , the space–time RD solution procedure to compute funþ1
i gi2sh can be summa-

rized in three steps:

(1) "T 2 sh the following space–time residual is computed:
/h ¼
Z tnþ1

tn

Z
T

ouh

ot
þ~k � ruh

� �
dxdy dt. ð39Þ
Fig. 2. Inflow and outflow states.
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Using (9) and the properties of the P1 basis functionsNi, the space–time residual can be shown to be [33]
/h ¼
X
j2T

jT j
3

unþ1
j � unj

� �
þ Dt

2

X
j2T

kjunj þ
Dt
2

X
j2T

kjunþ1
j . ð40Þ
Definition (39) of the residual renders the schemes inherently implicit. Introducing the modified
parameters (18) and (19), the space–time residual can be expressed in the more compact form [35,51]
/h ¼
X
j2T

bkjunj þ ekjunþ1
j

� �
. ð41Þ
As shown in [35,51], the parameters (18) and (19) are space–time analogs of the kj parameters (13).

(2) Portions of the cell residual are distributed to the nodes of T. The fraction of /h distributed to a node

i 2 T is denoted by /T
i . Again, one introduces distribution coefficients given by (23).

(3) The unknowns funþ1
i gi2sh are the solution of the algebraic system
X

T2Di

/T
i ¼ 0 8i 2 sh. ð42Þ
We must specify the form of the distribution functions f/T
j gj2T to determine the properties of the discret-

ization. The definitions of consistency, linearity and linearity preservation remain basically unchanged.

Schemes having bounded distribution coefficients can be shown to be second-order accurate in space
and time, provided that the approximations of the unknown and of the fluxes, uh and Fh respectively,

are at least second-order accurate in space and time [33,43]. The following two properties need instead a

specific definition:

Causality. It corresponds to the preservation of the past solution. For all the schemes respecting this prop-
erty only the nodal values at time tn+1 receive portions of the residual, hence only the values funþ1

i gi2sh are
considered as unknowns in (42). This property can be shown to be strictly tied to multidimensional upwind-

ing in space–time [29,30,35,51]. All the schemes considered in this paper respect causality.

Positivity. Introducing the arrays Un and Un+1, with Uk
i ¼ uki 8i 2 sh and k = n, n + 1, system (42) can be

rewritten as
AUnþ1 ¼ BUn. ð43Þ
Positive space–time RD respect simultaneously the following properties:

(1) A is an invertible M-matrix (Aii P 0;Aij 6 0; jAiij >
P

jjAijj 8i).
(2) B is a positive matrix (Bij P 0 8i; j).

Positive space–time schemes respect a discrete maximum principle [33].

Due to Godunov�s theorem only nonlinear space–time schemes can be simultaneously positive and lin-

earity preserving.

3.2.1. Linear positive space–time schemes: the N1 and N2 schemes

We present here the space–time positive schemes used in our work. They have been proposed in [35,31–

33] and they are different extensions of the N scheme (34) to the space–time framework.

3.2.2. The N1 scheme of Csı́k et al.

As remarked in the introduction, the extension of the space–time framework introduced in [28–30] to

prismatic elements has been reported in [35]. The N1 scheme, is the space–time variant of the N scheme



Fig. 3. Space–time element (left). Space–time inflow and outflow states (right).
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proposed in the reference. Consider a triangle T composed of nodes (i, j, k) and the corresponding space–

time element T · [tn, tn+1] (left in Fig. 3). We define space–time inflow and outflow states as the values of uh

at the intersections of the characteristic line crossing the space–time element and the element itself (right in

Fig. 3):
euin ¼ �eN �1X
j2T

ek�
j u

nþ1
n þ bk�

j u
n
j

� �
; euout ¼ eN �1X

j2T

ekþ
j u

nþ1
n þ bkþ

j u
n
j

� �
ð44Þ
with eN given by
eN ¼
X
j2T

ekþ
j þ bkþ

j

� �
. ð45Þ
With these definitions, one can easily show that (41) can be rewritten as
/h ¼
X
j2T

bkjunj þ ekjunþ1
j

� �
¼ eN euout � euinð Þ. ð46Þ
The N1 scheme is then defined by the distribution functions
/N1
i ¼ ekþ

i ðunþ1
i � euinÞ to node i at time tnþ1;

/N1
i ¼ bkþ

i uni � euin

� �
to node i at time tn.

ð47Þ
The N1 scheme is a true space–time variant of the N scheme in which the ekj and bkj parameters play the role

of Jacobians of the space–time flux~kuþ t̂u (see Fig. 3). Indeed, ekj contains a contribution proportional to

kj, which is the Jacobian of the spatial components of the flux, and an extra term proportional to the Jaco-

bian of the temporal flux:
ekj ¼
Dt
2
kj|ffl{zffl}

spatial component

þ jT j
3|{z}

temporal component

. ð48Þ
A similar decomposition can be done for bkj. Since the Jacobian of the temporal component of the fluxes

never vanishes, the N1 scheme is always well defined, eN in (45) remaining positive when~k ! 0. So, differ-

ently from the N scheme, the N1 scheme does not need any fix in this limit. Moreover, it is positive and it
inherits all the stability properties of its steady counterpart. Evidently, as written in (51), the N1 scheme

does not respect causality unless one has
bkþ
j ¼ 0 8j 2 T ; 8T 2 sh. ð49Þ
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This condition highlights the relation between causality and multidimensional upwinding in space–time. It

can be immediately checked that (49) implies
Dt 6 min
T2sh

DtT ; DtT ¼ 2

3

jT j
max
j2T

kþj
. ð50Þ
Hence the N1 scheme respects causality under a time-step constraint. Note that if (49) is respected, then no
residual is distributed to nodes at time level tn and the N1 scheme becomes
/N1
i ¼ ekþ

i ðunþ1
i � euinÞ ð51Þ
with
euin ¼ �eN �1X
j2T

ek�
j u

nþ1
n þ bk�

j u
n
j

� �
; eN ¼

X
j2T

ekþ
j . ð52Þ
Condition (50) is a strict constraint for an implicit scheme. However, in [28–30,35] it has been overcome

using a double layer formulation in which one solves simultaneously for values of uh at time tn+a and tn+1,
with a 2 (0, 1). Causality is guaranteed by the satisfaction of (50) in the first layer of elements, while an arbi-

trarily large time step tn+1 � tn+a can be used in the second layer. This technique increases the number of

unknowns to be solved for at each time step but it allows to construct unconditionally stable and positive

schemes [29,30,35]. This is of great advantage when dealing with locally highly refined meshes as proved in

[28,29,35]. As already remarked, due to its true space–time character, the N1 scheme is always well defined.

However, the additional numerical dissipation due to the upwinding in the time direction results in a very

strong numerical dissipation as shown by the results reported in [35].

3.2.3. The N2 scheme of Abgrall and Mezine

A different linear positive scheme has been introduced in [32,33]. With the notation of (34), the N2

scheme is defined by the following local nodal residuals:
/N2
i ¼ jT j

3
unþ1
i � uni

� �
þ Dt

2
kþi uni � unin
� �

þ Dt
2
kþi unþ1

i � unþ1
in

� �
. ð53Þ
Even if proposed in the space–time framework, the N2 scheme is the combination of the Crank–Nicholson

time-integration with the N scheme (34). It is consistent and it verifies causality by construction. The N2
scheme is positive under the time step constraint:
Dt
X
T2Di

kþi 6 2jSij. ð54Þ
Not surprisingly, condition (54) is the time-step restriction for the positivity of the N scheme (38) with

CFL = 2, typical of the Crank–Nicholson time discretization [52]. Using the double layer approach of
[29,30,35] the time-step constraint has been overcome in [33,43,34] where unconditionally stable and posi-

tive variants of the scheme have been presented. The application of these variants to computations on

meshes containing highly refined areas has been shown in the references. As for the N scheme, in the limit
~k ! 0, a fix is needed to avoid division by zero.
3.3. Matrix residual distribution for linear hyperbolic systems

The extension of RD to the numerical solution of hyperbolic systems can be designed following different
approaches. Here we adopt the so-called matrix variant of the schemes [5,12,13]. Matrix RD are a formal

extension of the scalar schemes to systems. In particular, if F in (1) is linear in u, then the Kj matrices (11)
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are constant and the schemes presented in Sections 3 and 5 can be applied as they are, provided that the kj
parameters are replaced by the Kj matrices and the scalar unknown uh is replaced by a vector unknown uh.

To give an example, the matrix variant of the N scheme (34) is defined by the distribution function
/N
i ¼ Kþ

i ui � uinð Þ; uin ¼ �N�1
X
j2T

K�
j uj; ð55Þ
where now N is the matrix
N ¼
X
j2T

Kþ
j ; ð56Þ
and the element residual is given by
/h ¼
X
j2T

Kjuj. ð57Þ
The distribution coefficients become distribution matrices. Properties such as consistency, linearity and lin-

earity preservation extend quite easily to the matrix schemes. The same is not true for positivity for which

no matrix analog can be formulated. However, a discussion concerning the stability properties of matrix

RD schemes can be found in [41–43], where the authors use a wave decomposition technique to derive

L1–bounds on the numerical solution obtained with the matrix variant of some positive scalar schemes.

Matrix space–time residual distribution schemes are obtained in a similar fashion. As for the matrix RD,
properties such as consistency, linearity, linearity preservation and causality extend trivially to the system

case. No definition of a positive scheme can be given, even though the wave decomposition analysis of [41–

43] could be applied. As an example, the matrix variant of the space–time N1 scheme (51) is defined by the

local nodal residuals
/N1
i ¼ eKþ

i ðunþ1
i � euinÞ to node i at time level tnþ1;

/N1
i ¼ bKþ

i uni � euin

� �
to node i at time level tn

ð58Þ
with
euin ¼ �eN �1X
j2T

eKþ
j u

nþ1
j þ bKþ

j u
n
j

� �
; eN ¼

X
j2T

eKþ
j þ bKþ

j

� �
ð59Þ
and the space–time residual given by
/h ¼
X
j2T

eKju
nþ1
j þ bKju

n
j

� �
. ð60Þ
The causality constraint (50) becomes for the matrix N1 scheme
Dt 6 min
t2sh

DtT ; DtT ¼ 2

3

jT j
maxj2Tmaxkk

þ
jk

; ð61Þ
being kjk the kth eigenvalue of Kj. Note that if constraint (61) is respected, all the bKþ
j are zero and the N1

scheme simply becomes
/N1
i ¼ eKþ

i unþ1
i � euin

� �
ð62Þ
with
euin ¼ �eN �1X
j2T

eKþ
j u

nþ1
j þ bKþ

j u
n
j

� �
; eN ¼

X
j2T

eKþ
j . ð63Þ
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3.4. Conservative matrix RD for nonlinear systems: LRD vs CRD

The extension of the schemes to the discretization of nonlinear systems is more difficult, due to the fact

that nonlinear conservation laws can evolve discontinuous solutions even for smooth initial data. In this

case, care must be taken to ensure that across these discontinuities the physically relevant jump conditions
are recovered at the discrete level. For the Euler equations with perfect gas equation of state, the existence

of a multidimensional analog of Roe�s parameter vector Z [1,53] implies an equivalence between the quasi-

linear form of the equations and their integral form:
I
oT

F �~ndl ¼
Z
T
r �Fdxdy ¼

Z
T

oF

oZ
ðZÞ oZ

ox
þ oG

oZ
ðZÞ oZ

oy

� �
dxdy. ð64Þ
Using the fact that the flux jacobians are linear functions of the components of Z and assuming a piecewise

linear continuous approximation of Z on sh, last expression can be evaluated exactly as
I
oT

F �~ndl ¼ 1

2

X
j2T

oF

oZ
ð�ZÞ �~njZj ¼

X
j2T

Kjð�ZÞ�uj; ð65Þ
where �Z is the arithmetic average of the values of Z in the nodes of T and
Kj ¼
1

2

oF

oZ
ð�ZÞ oZ

ou
ð�ZÞ �~nj ¼

1

2

oF

ou
ð�ZÞ �~nj; �uj ¼

ou

oZ
ð�ZÞZj. ð66Þ
If Roe�s linearization is used to evaluate the flux jacobians, the residual can then be still expressed as in
(22). In this case, matrix RD schemes are obtained as in the linear case. As in [44], we refer to this

class of Residual Distribution schemes as to LRD, denoting that conservation is guaranteed by the

linearization. Also in the nonlinear case, properties such as linearity preservation and consistency ex-

tend easily to the LRD schemes, while the linearity of a scheme is formulated in terms of the linear-

ized problem. More complex is the issue of defining a monotonicity condition in a rigorous way, this

condition being quite intuitive but very difficult to formalize, especially on general unstructured meshes.

The L1 stability framework proposed in [41–43] for linear systems could be indeed applied to the lin-

earized problem to define the local stability of a scheme. The equivalence with the nonlinear problem
implied by the exact mean-value linearization would allow to extend the analysis to the nonlinear case.

It is however out of the scopes of this paper to formally define the monotonicity of a scheme and the

reader is referred to the above mentioned articles and to the lecture [49] for a discussion on the topic.

Here, by abuse of language, in the nonlinear case we will refer to a matrix scheme as being monotone

if it produces numerical solutions which are piecewise smooth and that, in correspondence of discon-

tinuities and of large local variations of the solution, does not produce any unphysical oscillations.

An example of such a scheme for the Euler equations is the LRD N scheme obtained by combining

(55) with the conservative linearization of [1]. Its ability to approximate strong discontinuities without
spurious numerical oscillations has made this scheme the basis for the construction of most (or all) the

nonlinear high-order schemes proposed in the literature. Similarly, in [32,33,43] an LRD N2 scheme

for the Euler equations has been proposed. Under a constraint analog to (61) the scheme of

[32,33,43] yields oscillation free shock capturing of moving discontinuities.

When a conservative linearization cannot be used, the LRD matrix N scheme and its space–time vari-

ants cannot be conservative. As mentioned in the introduction, the need of monotone matrix schemes for

the solution of general systems, has led to several generalizations of the N scheme the most appealing of

which are the N scheme based on adaptive numerical quadrature of the quasi-linear form of [40] and
the CRD approach of [44]. The technique proposed in the second reference, and used here, is briefly re-

called hereafter.
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The approach proposed in [44] is inspired by the observation that the inflow state uin in (55) is uniquely

defined by the conditions
1 In

rule on
/i ¼ Kþ
i ui � uinð Þ;P

j2T
/j ¼ /h ¼

P
j2T

Kjuj.

8<: ð67Þ
As a consequence, conservative first-order schemes can be defined by
/i ¼ Kþ
i ð�uÞ ui � ucð Þ;P

j2T
/j ¼ /h ¼

H
oT

Fh �~ndl;

8<: ð68Þ
where the last integral can be approximated using quadrature formulas on the edges of T. The parameter
selecting a particular scheme is the linearized state �u used to evaluate the flux jacobians. However, the

schemes are conservative independently on the choice of �u, due to the evaluation of the residual /h via

the integration of the fluxes on the boundary of T, and to the definition of uc: once �u is chosen, in fact,

uc is uniquely defined and given by
uc ¼ N�1
X
j2T

Kþ
j uj � /h

 !
. ð69Þ
The authors of [44] have introduced the terminology CRD to denote the class of RD schemes for which

conservation is guaranteed by computing the residual with the direct evaluation of the contour integral

of the fluxes, as opposed to the LRD approach described earlier. Compared to the N scheme based on
adaptive quadrature of [40], the CRD N scheme is considerably cheaper and still yields non-oscillatory

solutions.1 Nevertheless, no theoretical analysis has been done for the CRD N scheme. As already men-

tioned, in [40] the authors prove energy and entropy stability of their scheme, while L1 stability can be

proved using the wave decomposition technique of [41–43].
4. Conservative schemes for time-dependent systems

In this section we propose a conservative framework allowing to approximate discontinuous solutions of

general time-dependent conservation laws. In particular, we consider the construction of conservative

schemes guaranteeing a non-oscillatory approximation of weak unsteady solutions of (1). As remarked

in the previous section, the particular case of the Euler equations with perfect gas equation of state has been

already considered in [32,33,43], where, thanks to the existence of the multidimensional conservative line-

arization [1], an LRD N2 scheme has been proposed and extensively tested. Here we consider the more

general case in which such a linearization does not exist. We define on each element T 2 Th the space–time

residual as [33]
/h ¼
Z tnþ1

tn

Z
T

ouh

ot
þr �Fh

� �
dxdy dt. ð70Þ
Taking uh and Fh as in (9) and (10), respectively, we compute (70) as
/h ¼
X
j2T

jT j
3

unþ1
j � unj

� �
þ Dt

2

I
oT

Fðunþ1Þ �~ndlþ Dt
2

I
oT

FðunÞ �~ndl; ð71Þ
[44], a monotone Mach 10 bow shock computation on a circular cylinder is shown. The residual is computed using Simpson�s
each edge of T, requiring in total 6 quadrature points. Only 1 Gauss point is used to compute each Kj.
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where the last two integrals are approximated using Gaussian formulas. Provided that consistency is re-

spected (see Eq. (25)), this approach guarantees the recovery of a discrete analog of the Rankine–Hugoniot

conditions across unsteady shocks. In particular, conservative schemes are readily obtained defining /i as
/i ¼ bi/
h; ð72Þ
where the {bj}j2T are distribution matrices respecting
X
j2T

bj ¼ I. ð73Þ
A scheme of the form (72) is conservative independently on how the bj matrices are defined, as long as (73)

is respected. Examples of schemes of this type are the space–time LDA scheme of [35] and the LDA scheme

of Caraeni [22]. These schemes are conservative linear and linearity preserving. Unfortunately, they give a

very oscillatory resolution of discontinuities. The problem is then to design matrix schemes providing a

non-oscillatory approximation of these features, consistent with the residual given by (71). In order to

do this, the first step is the definition of linear first-order non-oscillatory schemes to be used as a basis
for the construction of nonlinear schemes. This will be accomplished by constructing CRD variants of

the N1 and N2 schemes.

The CRD N1 scheme. Consider first the case of the N1 scheme. As done for the N scheme in [44], we

observe that a family of conservative and consistent schemes is defined by
/N1
i ¼ eKþ

i ð�uÞ unþ1
i � euc

� �
;P

j2T
/N1

j ¼ /h

8<: ð74Þ
with /h given by (71). Once the linearized state �u is chosen, and assuming that the causality constraint (61)
is verified, euc is uniquely defined and given by
euc ¼ eN �1 X
j2T

eKþ
j u

nþ1
j � /h

 !
; eN ¼

X
j2T

eKþ
j . ð75Þ
The CRD N2 scheme. The CRD variant of the matrix N2 scheme is readily obtained recalling that the

N2 scheme is the combination of the N scheme with Crank–Nicholson time-integration. The CRD N2

scheme is then defined by
/N2
i ¼ jT j

3
ðunþ1

i � uni Þ þ
Dt
2
Kþ

i unþ1
i � unþ1

c

� �
þ Dt

2
Kþ

i uni � unc
� �

ð76Þ
with
unc ¼ N�1
X
j2T

Kþ
j u

n
j � /n

 !
; /n ¼

I
oT

FðunÞ �~ndl; ð77Þ
and similarly for unþ1
c . Note that in all the formulas Kj ¼ Kjð�uÞ. Moreover, for the N2 scheme, different lin-

earized states could be used to compute unc and unþ1
c , even if this choice does not influence the consistency of

the scheme.

The space–time schemes (74) and (76) are the conservative CRD variants of the matrix N1 and N2

schemes we sought. Even though we give no formal proof that these scheme verify any local stability con-

dition, we will give extensive numerical evidence that they produce non-oscillatory approximations of dis-

continuous solutions and hence, that they are monotone according to the heuristic definition of

monotonicity given in Section 3.4. In the rest of the paper, we will refer to schemes (74) and (76) simply
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as to the linear N1 and linear N2 scheme. As a final remark, we note that for the systems of equations we

consider in the paper, the matrix N in (77) is singular in the case of vanishing flow speed. Even though in

[15] it is shown that KjN
�1 and Kþ

j N
�1 are well behaved in this limit, in the system case this singularity does

not correspond necessarily to the case /h = 0. In these instances, the N2 scheme needs a fix to allow the

inversion of N. As in the scalar case, due to its true space–time character, the N1 scheme is always well
defined, since the matrix eN has no singular points. On the other hand this also makes the scheme partic-

ularly diffusive, as it will be clear from the numerical results.

The next step is to show how to construct, starting from the linear N1 and N2 schemes, linearity pre-

serving schemes, guaranteeing an oscillation free capturing of shocks.

5. Conservative high-order nonlinear RD schemes

In this section we perform an analysis of the nonlinear limiting technique proposed in [33,41–43,48] for

the construction of nonlinear RD schemes. Nonlinear schemes are needed to combine linearity preservation

and positivity or, more generally speaking, non-oscillatory shock capturing. The advantage of the use of the

RD approach is that high-order schemes yielding a monotone (in the sense of the previous sentence) and

stable approximation of shocks can be obtained on unstructured meshes without adding to the discretiza-

tion local nonlinear discontinuity capturing operators. The key idea is, given a positive first-order scheme,

to use the sign of its local residuals as a reference to generate a positive linearity preserving scheme. This

approach has its roots in the early work of Struijs. The PSI scheme proposed in [9] still represents undoubt-
edly an optimum among schemes for the solution of steady scalar advection on unstructured meshes. A first

generalization of the PSI scheme of [9] can be found in [54], where it is shown how nonlinear RD schemes

can be generated through the use of limiter functions typical of high-order FV methods. More recently,

the general mathematical framework of the limited or modified RD schemes has been introduced by Abgrall

et al. in [33,41–43,48]. We analyze this technique and derive conditions guaranteeing its well-posedness. The

extension to systems is then briefly described, underlining the advantage of the CRD formulation of the

linear schemes introduced in the previous section.

5.1. Well-posed nonlinear mappings

Consider the solution of the scalar advection Eq. (20). Given a first-order positive scheme with local

residuals f/P
j gj2T , we would like to find a set of distribution functions {/j}j2T respecting simultaneously

(p) /j ¼ aj/
P
j ; aj P 0 ) /j/

P
j P 0,

(lp) /j ¼ bj/
h; jbjj < 1.

Condition (p) guarantees that the resulting scheme is positive, while (lp) ensures linearity preservation.

Combining the two and adding the consistency constraint (25), one obtains a scheme for which /i = 0 if

/h = 0 or /P
i ¼ 0, otherwise /i = bi/

h with
bjb
P
j P 0 8j 2 T ðpÞ;

jbjj < 1 8j 2 T ðlpÞ;P
j2T

bj ¼ 1 ðcÞ;

8>><>>: ð78Þ
and
bP
j ¼

/P
j

/h . ð79Þ
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In (78), condition (p) is still dictated by the positivity requirement, condition (lp) guarantees the linearity

preservation of the resulting scheme and (c) is the consistency constraint. The goal is then to look for non-

linear mappings
fbP
j gj2T ! bj

� 	
j2T ð80Þ
preserving the sign of the arguments and guaranteeing the boundedness of the mapped coefficients. Some

constructions satisfying (78) can be found in [33,41–43,48]. Most probably the study of these mappings will

be the subject of future research. Not surprisingly, the PSI of Struijs [9] belongs to this class of schemes, for

a particular choice of the mapping. The results obtained with the schemes generated with this construction,

named limited or modified schemes in [33,41–43,48], are very promising. Nevertheless, as we will show, the
applicability of this technique has some limits which have not been underlined. In [42,48] the authors pro-

pose to use this construction on higher-order triangular finite elements to obtain nonlinear monotone

schemes of accuracy higher than two.

Since on these elements positive first-order RD schemes do not extend trivially, the authors have used as

a basis for the mapping first-order positive schemes on the P1 sub-triangulation (see Fig. 4). In this case,

one has
X
j2T

/P
j ¼ /1 6¼ /h; ð81Þ
since /h is computed with the higher-order approximation of the unknown, while /1 is obtained with a
piecewise linear approximation. The authors of [42,48] have also remarked that the desired order of accu-

racy could not be obtained unless the mapping used in the computations was modified to enforce the con-

sistency of the nonlinear scheme. Our objective is to study this case and try to justify the fixes introduced in

[42,48] to obtain the desired accuracy. Note that similar ideas have been used also in [34,55] to construct

improved and very high-order schemes for time-dependent problems.

To derive conditions for the applicability of the limiting, we analyze the properties verified by the map-

pings. Consider the case /h 6¼ 0. The consistency constraint (c) in (78) requires that the sum of the bounded

nonlinear distribution coefficients must be equal to one. This requires the existence of at least one nonlinear
distribution coefficient with positive sign. Because of the positivity condition (p) in (78), this requires the

existence of at least one bP
j with positive sign. If the positive first-order scheme is consistent, then
X

j2T
/P

j ¼ /h and
X
j2T

bP
j ¼ 1. ð82Þ
Fig. 4. P2 and P3 elements (left) and respective P1 sub-triangulation (right).
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Hence there will be at least one bP
j with positive sign, thus the whole procedure is well defined. More gen-

erally, we can say that if /1/h > 0, then
X
j2T

bP
j ¼

X
j2T

/P
j

/h ¼ /1

/h > 0. ð83Þ
Hence, there will be at least one bP
j with positive sign and a mapping respecting (78) can be found. As a

consequence of this analysis, we can state the necessary condition:

Proposition 1 (Existence of mappings, necessary condition). A necessary condition to be able to find a

construction leading to a mapping (80) satisfying (78) is that
/h
X
j2T

/P
j > 0. ð84Þ
Unfortunately, condition (84) is in general almost impossible to ensure and one will encounter the case

/1/h
6 0. When this happens, the whole construction breaks down, since
X
j2T

bP
j 6 0; ð85Þ
and there is no guarantee on the sign of the fbP
j gj2T . In particular, when
bP
j 6 0 8j 2 T ; ð86Þ
the application of the limiting is impossible unless one relaxes either the positivity (p) or the consistency (c)

condition in (78). Clearly, to the necessary condition (84), we can add the sufficient condition.

Proposition 2 (Well-posedness, sufficient condition). A sufficient condition for a mapping (80) satisfying

(78) to be well-posed is that
X
j2T

/P
j ¼ /h. ð87Þ
We remark that no assumptions have been made on the sign of the nonlinear distribution coefficients. All

the mappings proposed in [33,41–43,48] assume bj P 0 "j 2 T. This makes our analysis even more impor-

tant. We are now able to understand why the schemes proposed in [42,48] necessitate a fix to deliver the
higher accuracy. Indeed, when /1 6¼ /h as in the references, the consistency constraint in (78) is in general

not satisfied unless strongly enforced. As a consequence the schemes obtained in this way are inconsistent

and hence not convergent [56]. On the other hand, as shown in this section, the consistency condition can be

enforced only at the expense of relaxing positivity. Hence, the schemes proposed in [42,48,34,55] are

non-positive.
5.2. Nonlinear conservative schemes for conservation laws

The extension of the limiting technique to systems is still a subject of research. For linear symmetric sys-

tems, some theoretical results are available in [41–43], where the authors use a wave decomposition tech-

nique to reduce the vector of the element residual to a set of scalar residuals. Once the same is done for

the local nodal residuals of a first-order monotone matrix scheme, one can apply the limiting on each scalar
component. The authors also prove the L1-stability of the scheme obtained in this way. The approach has

been used to construct linearity preserving and non-oscillatory schemes for the solution of the steady and

unsteady Euler equations for a perfect gas in [33,41–43].
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Here we use the same procedure. In particular, the numerical results we will present have been obtained

by applying the limiting to the linear conservative N1 and N2 schemes introduced in Section 4. Denoting

the vector of distributed residuals of the linear schemes by f/L
j gj2T , we decompose these vectors in scalar

residuals by projecting them on the eigenvectors of
Kð�uÞ ¼ oF

ou
�~u ¼ RKL; ð88Þ
where~u denotes the local (model dependent) flow speed. Note that~u, R and L depend on the choice of the

local averaged state �u. If fuL
j gj2T denote the vectors of scalar (projected) distributed residuals of the linear

schemes, and uh denotes the vector of the scalar (projected) element residuals, we have
uh ¼ L/h; uL
j ¼ L/L

j 8j 2 T . ð89Þ
The kth component of uL
i , denoted by uL

ik , is then limited. In particular, we set the nonlinear distributed

residual uik to zero whenever uL
ik ¼ 0 or uh

k ¼ 0, otherwise uik ¼ biu
h
k , where the mapped scalar distribution

coefficients are computed as [33,41–43,48]
bi ¼
maxð0; bL

i ÞP
j2T maxð0; bL

j Þ
; bL

j ¼
uL

jk

uh
k

. ð90Þ
The residuals are then transformed back to conservative variables:
/j ¼ Ruj 8j 2 T . ð91Þ
We refer to the resulting schemes as to the nonlinear LN1 and LN2 scheme. Note that, due to the CRD
formulation, the sufficient condition of Proposition 2 is met by construction by the linear schemes, that

is, we always have
X
j2T

uL
jk ¼ uh

k . ð92Þ
Hence, the additional advantage of the conservative formulation proposed in this paper is that it allows to

construct linear schemes always guaranteeing the well-posedness of the limiting. Hence, the LN1 and LN2
schemes are always well defined. They are linearity preserving by construction and conservative indepen-

dently on the degree of nonlinearity of the fluxes FðuÞ, due to the definition (71) of the residual. Their

robustness and non-oscillatory character will be extensively proved by the numerical tests presented in

the next sections.
6. Computational details and numerical results

This section is devoted to the discussion of the numerical results obtained with the linear conservative N1

and N2 schemes and their limited variants, the nonlinear LN1 and LN2 schemes. Before discussing the re-

sults we summarize the solution procedure and give some details relative to the practical implementation of

the schemes. Then we present the results obtained by solving the Euler equations for a perfect gas. Even if

in this case a conservative linearization does exist [1], the results show that with our formulation one can use

other linearizations. This simplifies the definition of the schemes while guaranteeing the preservation of the

non-oscillatory character of the results. Finally we show the application to a system lacking a conservative

linearization for which the use of our approach is essential to guarantee conservation.
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6.1. Implementation details

Starting from un = uh(x,y,t = tn), we march in time as follows:

1. Time-step computation. The time step Dt is computed according to
Dt ¼ 0.75min
T2sh

DtT ð93Þ
with DtT given by (61). The eigenvalues needed in (61) are computed using the arithmetic average of

funjgj2T to linearize the jacobians. Clearly (93) is a very strict time-step constraint. We remark once more

that it can be overcome by using the two-layer formulation of [28–30]. This aspect is however out of the

scopes of this paper which focuses on the conservation and shock-capturing properties of the linear and

nonlinear schemes proposed. Similarly, we observe that the time-step constraint for the positivity of the
N2 scheme (Eq. (54) in the linear case) would allow to use a larger time step which would probably lead

to slightly better (less diffusive) results with this scheme, due to the reduced number of iterations. The

time-step restriction for the positivity of the LN2 scheme is however obtained by the local positivity anal-

ysis of the N2 scheme. As shown in [33,34], this condition turns out to be precisely (61).

2. Space–time residual. For all T the space–time residual (71) is computed. Consistently with the choice of

linear variation of uh in space, the line integrals of the flux FðuhÞ are approximated with a 2 points

Gaussian formula (see [57] for a study on the influence of the number of Gauss� points in flux quadra-

ture). Note, however, that improvements can be made in this respect. As shown in [15], second order of
accuracy only requires the approximation of the boundary integral of the flux to be Oðh3Þ. This is already
obtained with a linear interpolation of F in space, that is, using trapezium rule on each edge. As the

choice of the time-stepping strategy, the choice of the flux quadrature is an important aspect with respect

to the efficiency of the schemes and certainly needs further refinement.

3. Residual distribution. The residual is distributed to the nodes of T. For the linear N1 and linear N2

schemes we use Eqs. (74) and (76) respectively. The average state �u is given by the arithmetic average

of funþ1
j gj2T in the case of the N1 scheme. For the N2 scheme we use the average of funjgj2T in (77)

and in the corresponding part of the residual and the average of funþ1
j gj2T to compute unþ1

c and in the
corresponding part of the residual. To obtain the nonlinear LN1 and LN2 schemes, we apply the limiting

of Section 5. The wave decomposition (88) is performed by taking �u as the average of funþ1
j gj2T and the

scalar distribution coefficient are computed according to (90). We recall that the well-posedness of

the limiting is guaranteed by the consistency of the linear schemes. Conservation is guaranteed by the

boundary integration of the fluxes.

4. Solve nonlinear system. A nonlinear algebraic system formally identical to (42) is solved. As in [28–

30,35,44] we use an explicit pseudo-time iterative procedure. For the linear schemes, a few explicit iter-

ations are enough to converge the L1 norm of the nodal residuals four or five orders of magnitude in
pseudo-time and a number of iterations from 20 to 40 are necessary to converge to machine accuracy.

As in [33], convergence to machine accuracy is never obtained with the nonlinear schemes. A number of

explicit iterations of the order of 20–40 is needed for a residual drop of three or four order of magnitude

in pseudo-time. We remark that this does not pose any problems with respect to grid convergence, as a

consequence of the fact that /h in (71) is of Oðh3;Dt2Þ and of the residual character of the schemes. As

confirmed by the numerical experience, when reducing the mesh size h, any norm of the nodal residual of

the nonlinear schemes converges to values increasingly close to machine zero in the inner pseudo-time

iterations. This guarantees that the error due to the poor convergence is always within the truncation
error. Concerning the choice of the explicit iterative procedure, we mention that in [58,59] the authors

have compared the explicit pseudo-time stepping approach to an implicit Newton algorithm for the solu-

tion of the nonlinear algebraic system arising from the space–time RD discretization of the Euler and
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Navier–Stokes equations obtained with the schemes of [28–30]. For inviscid problems containing strong

discontinuities, like the ones considered here, the explicit method results in a faster convergence in terms

of CPU time.

Steps 1–4 are repeated until tn+1 = tn + Dt = tf.

6.2. Numerical results: Euler equations for a perfect gas

The Euler equations for a perfect gas can be written as in (1) with
u ¼

q

qu

qv

qE

0BBB@
1CCCA; F ¼

qu qv

qu2 þ p quv

quv qv2 þ p

quH qvH

0BBB@
1CCCA;
where q is the fluid density,~u ¼ ðu; vÞ is the velocity vector, p is the thermodynamic pressure, while E and H

are the total specific energy and enthalpy, respectively. The system is closed by the relations:
H ¼ E þ p=q; p ¼ ðc� 1Þq E �~u �~u
2

� �
;

where c the ratio of the specific heats, assumed to be equal to 1.4.

6.3. Moving shocks

To asses to shock capturing capabilities of the schemes we performed computations of moving planar
shocks. We discretize the spatial domain [0, 2] · [0, 0.1] using two different meshes: an unstructured one

containing 2166 nodes and 3910 triangles (h � 1/100) and a structured one composed of quads (h = 1/

100) cut into triangles using the right running diagonals (see Fig. 5). Periodic boundary conditions in

the y direction are imposed. The initial solution is an exact Mach 10 moving shock located at x = 0.5.

The final time has been set to tf = 0.1, corresponding to a displacement of the shock of a length Lx = 1.

No relevant differences have been observed between the results obtained on the two different meshes. In

Figs. 6 and 7 we show the pressure and density profiles obtained on the unstructured grid. We plot the data
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Fig. 5. Unstructured (left) and structured (right) triangulation.
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obtained extracting 201 points on the line y = 0.05. The shock position is computed correctly by all the

schemes, indicating their conservative nature. The results of the limited schemes (Fig. 7) show indeed a

sharper capturing of the discontinuity. In all the density profiles, we can see two perturbations moving up-

stream of the shock. Only one of them is present in the pressure distributions. We claim that these pertur-

bations are due to a discretization error at t = 0. To confirm this hypothesis we have run the simulations on
finer meshes. The results are summarized in Fig. 8. On the left in the figure we report the results obtained on

structured triangulations with the linear N2 scheme. We show the nodal values of the density in the middle

of the domain for mesh sizes h = 1/100 and h = 1/500. We see that as the mesh is refined, a reduction of the

error is indeed observed. However, due to the fact that the error is generated in correspondence of the initial

singularity, this reduction is of less than OðhÞ. The scheme splits the error in components moving along the

characteristic directions. It can be easily checked that the perturbation closer to the origin of the x-axis

moves with speed uL � aL, being aL the speed of sound after the shock. We conclude that this must be

the projection of the error generated at t = 0 on the characteristic corresponding to the slow acoustic speed.
Similarly, the second perturbation moves with speed uL and hence it is the projection of the error on the
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entropy field, as confirmed by its absence in the pressure distributions. Probably a third component of the

error, which we have been unable to detect, is also present. Similar conclusions can be drawn from the right

picture in Fig. 8 where the results obtained with the LN2 scheme on the regular mesh with h = 1/500 are

reported. Comparing this result with the one on Fig. 7, we see again that the reduction of the error is indeed

small.2 Analog results have been obtained with the linear N1 and the nonlinear LN1 scheme. These effects,

however, are not induced by the conservative approach we propose. We performed the same computations

using the LRD N2 scheme of [33,43] obtaining results identical to the ones given by the CRD variant pro-

posed here. A similar behavior is observed also for the space–time schemes of [28–30]. We attribute the
appearance of this error to the difference between the exact jump relations and their piecewise linear

approximation on the mesh actually seen by the schemes. This difference produces the small amplitude per-

turbations seen in the results when applying the schemes to the initial exact shock. However, other expla-

nations could be possible [60,61] and this behavior certainly deserves a more detailed study. It must be
2 The error on the finer mesh is about half of the error on the coarse one.



Fig. 8. Mach 10 shock: error propagation. N2 (left) and LN2 (right) scheme.
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noted anyway that, apart from these perturbations, the nonlinear schemes produce a very sharp and mono-

tone capturing of the discontinuity.

6.4. A 2D Riemann problem

This problem is taken from [33]. At time t = 0 the velocity is set to zero, and the following discontinuity

in pressure and density is imposed:
p ¼
1 if xy P 0;

0.1 otherwise;



q ¼

1 if xy P 0;

0.1 otherwise.




We compute the solution up to time t = 0.2 on an unstructured discretization of the spatial domain [�1, 1]2

containing 39,822 nodes and 78,842 triangles, with h � 1/100 as in [33]. Contour plots of the computed den-

sity field are given in Fig. 9, while a comparison of the numerical solutions on the lower boundary of the

domain with the exact one-dimensional solution of the problem is reported in Fig. 10. All the discontinu-

ities are computed monotonically, with the proper strength and in the correct positions as it can be clearly

seen in Fig. 10. From the plots, one notes a striking difference between the results given by the linear N1
scheme and the nonlinear LN1 scheme. Similarly, a remarkable difference is observed between the solutions

of the linear N1 and N2 scheme. Of all the schemes, the N1 yields the worst results in terms of accuracy. As

already remarked in Section 3, this is a direct consequence of the extra numerical dissipation introduced by

the upwinding in space–time. However, the results of the LN1 and LN2 schemes are nearly identical: both

produce a very crisp resolution of the wave interactions and a non-oscillatory approximation of the discon-

tinuities. This is very interesting since it suggests that, as far as the nonlinear scheme is linearity preserving,

the results are qualitatively almost independent on the nature of the underlying linear scheme. Note that the

quality of our results is comparable to the one achieved in [33].

6.5. Double Mach reflection on a ramp

This is a severe test for the robustness and the accuracy of schemes designed to compute discontinuous

flows containing complex structures. It consists of the interaction of a planar Mach 10 shock with a 30�

ramp. See [62] for a detailed description. The simulation has been run on an unstructured triangulation
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Fig. 9. 2D Riemann problem. Density contours at time t = 0.2. Top: N1 (left) and LN1 scheme (right); Bottom: N2 (left) and LN2

scheme (right).
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(see Fig. 5) with h � 1/100. We use a rotated frame of reference, with the x-axis aligned with the ramp [62].

As it is customary for this test, we plot the contours of the density field. In Fig. 11 three results are shown.

On the top we report the solution obtained with a second-order cell-centered FV scheme using Roe�s
numerical flux, linear reconstruction and limiter proposed in [63] and a second-order Runge–Kutta time

integrator. On the middle and bottom pictures, we show the results obtained (on the same mesh) with

the nonlinear LN1 and LN2 scheme respectively. All the schemes resolve quite well the interaction between

the shock and the ramp. However, the resolution of the contact emanating from the triple point and of the
jet of fluid on the wall improves going from the top to the bottom picture, the FV scheme giving the worst

result. The two limited RD schemes show a sharper capturing of these features and of the shock. For this

test, the nonlinear LN2 scheme gives the best result.
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Fig. 10. 2D Riemann problem. Density (left) and pressure (right) at t = 0.2 and y = � 1.0. Top: N1 and LN1 schemes; Bottom: N2 and

LN2 schemes.
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6.6. A shock–shock interaction

This test has been included to assess the shock-capturing capabilities of the schemes in a true multidi-
mensional situation. It is one of the two-dimensional Riemann problems studied in [64] and later used also

in [65,26,24]. The problem consists of the interaction of two oblique shocks with two normal shocks. All the

discontinuities are moving backwards with respect to the speed in the pre-shock region as depicted in the

sketch on the left in Fig. 12. With reference to the notation of the figure, the initial data are given by
ðq; u; v; pÞ ¼

ð1.5; 0; 0; 1.5Þ state a;

ð0.1379928; 1.2060454; 1.2060454; 0.0290323Þ state b;

ð0.5322581; 1.2060454; 0; 0.3Þ state c;

ð0.5322581; 0; 1.2060454; 0.3Þ state d.

8>>><>>>:

The computations have been run on an unstructured discretization of the spatial domain [0, 1] · [0, 1] with

reference mesh size h = 1/200. A zoom of the grid in vicinity of the diagonal is shown on the right in Fig. 12.

We compare the numerical solution obtained with the LN2 scheme with the one of the FV scheme used in



Fig. 11. Double Mach reflection. Density at time t = 0.2. Cell-centered FV scheme (top), LN1 scheme (middle) and LN2 scheme

(bottom).
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the double Mach reflection test. As in [65,26,24] we compute the interaction up to time t = 0.8 and visualize

the results in terms of contours of the density (Fig. 13). We also report, in Fig. 14, the distributions of den-

sity and pressure along the diagonal (symbols do not correspond to mesh points). The plots in Fig. 13 show

that both schemes capture the complex structures in the solution: the interaction of the shocks generates

two symmetric lambda-shaped couples of shocks and a downward moving normal shock; very strong slip

lines emanate from the lower triple points and interact with one of the branches of the upper lambda
shocks, while a jet of fluid is pushed from the high pressure region (state a) against the normal shock. De-

spite of the irregularity of the grid, both schemes yield quite monotone and accurate results. However, the

LN2 scheme gives a much richer solution. The region of the jet is better resolved and so are the contact lines

showing, already on this mesh resolution, the onset of Kelvin–Helmoltz instabilities. The distributions of

pressure and densities along the diagonal confirm the superiority of the RD scheme as well as its monotone

character. The reader is referred to [34] for similar results obtained with the limited LRD N2 scheme on

finer meshes and to [26,24] for results obtained with a different nonlinear RD scheme on structured trian-

gular meshes.



Fig. 12. Shock–shock interaction. Initial solution (left) and zoom of the grid (right).

Fig. 13. Shock–shock interaction. Contours of the density obtained with: FV scheme (left) and LN2 scheme (right).
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6.7. Numerical results: homogeneous two-phase flow

In this section, we consider the hyperbolic system given by (1) with
u ¼

agqg

alql

qu

0BBB@
1CCCA; F ¼

agqgu agqgv

alqlu alqlv

qu2 þ p quv
2

0BBB@
1CCCA;
qv quv qv þ p



Fig. 14. Shock–shock interaction. Density (left) and pressure (right) distribution along the symmetry line. FV scheme (symbols) and

LN2 scheme (line).
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where ag and al are gas and liquid volume fractions, qg and ql are gas and liquid densities, p is the pressure,
~u ¼ ðu; vÞ is the velocity vector and q is the mixture density defined by
q ¼ agqg þ alql. ð94Þ
The phasic volume fractions respect the constraint
ag þ al ¼ 1. ð95Þ

Due to (95), we will denote simply by a, the gas volume fraction ag, often referred to as the void fraction.

The system is closed by the equations of state. In this work, we have used the following relations [66]:
p ¼ Cg
qg

qg0

� �cg

ð96Þ
with Cg = 105 Pa, qg0 = 1 kg/m3, cg = 1.4, and
p ¼ Cl
ql

ql0

� �cl

� 1

� �
þ pl0 ð97Þ
with Cl = 3.31 · 108 Pa, ql0 = 1000 kg/m3, cl = 7.15, pl0 = 105 Pa. This system of equations constitutes a

fairly simple model of homogeneous air–water two-phase flow [66]. It has however some appealing features
for the purpose of testing our schemes. The first one is exactly its simplicity, while the second being the fact

that it is fully hyperbolic and its complete eigenstructure can be analytically derived. Most importantly, the

model is in strong conservation law form and one can compute exact steady and unsteady Rankine–Hugon-

iot relations against which to test the schemes. However, the relation between the pressure and the con-

served mass and momentum fluxes is so complex that a conservative linearization can hardly be derived.

Moreover, because of the nonlinearity of the equations of state, pressure and volume fractions cannot

be computed in closed form from the conserved variables. Instead, combining the equations of state and

relation (95), a nonlinear equation for the pressure is obtained which can be solved in a few Newton
iterations (see [66] for more).
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6.8. Moving shocks in air–water mixtures

To further confirm the conservative character of our schemes, we present computations of a planar

shock moving in a quiescent two-phase mixture containing 50% gas and 50% liquid (alR = agR = aR = 0.5)

at a pressure pR = 106 Pa. To define the strength of the shock, we use the Mach number
Fig. 15

and N
MS ¼
uSffiffiffiffiffiffiffiffiffiffiffiffi
pR=qR

p ;
where uS is the velocity of the shock and qR is the density of the undisturbed mixture. Here we consider the

case MS = 3. The spatial domain is the rectangle [0, 2] · [0, 0.1]. The simulations have been run on the

meshes of Fig. 5 with periodic boundary conditions in the y direction. The final time of the simulation tf
has been fixed to 1/uS, corresponding to a displacement of the exact shock of a length Lx = 1. At time

t = 0 the shock is located at x = 0.5 m. No visible differences have been observed between the solutions

obtained on the unstructured and on the structured triangulation and only the results obtained on the
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unstructured grid are reported. The plots on Figs. 15 and 16 show pressure and gas void fraction distribu-

tions obtained by extracting 201 points along the line y = 0.05. The shock position is correctly computed.

The non-oscillatory character of the results is also clear from the figures. The perturbations seen in the case

of the Euler equations are not visible, probably due to the weaker character of this shock. The nonlinear

schemes give a very sharp and monotone capturing of the discontinuity.

6.9. A two-phase 2D Riemann problem

This problem is meant to be an analog of the two-dimensional Riemann problem of Section 6.2. The

initial solution is given by a still mixture with a = 0.5 in which the following discontinuity in the pressure

is imposed:
Fig. 16

(bottom
p ¼ 107 Pa if xy P 0;

108 Pa otherwise.
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The problem is solved on the domain [�5, 5]2 up to time t = 0.004 s on an unstructured mesh containing

19,932 triangles and 10,167 nodes (h = 1/10). In Fig. 17 we show the contours of the mixture density

(94) for all the schemes. On the boundaries of the domain three distinct waves are visible: an expansion,

a contact and a shock. Both the shock and the contact are noticeably better computed by the nonlinear

schemes. Moving away from the boundaries, we see how the waves interact with each other. The higher
resolution of the limited schemes is visible also from the fact that the lines of constant density in the expan-

sion are kept straight for a longer distance from the boundary. As in the case of the Euler equations, there is

a remarkable difference between the results of the linear N1 scheme and of the linear N2 scheme. The latter

gives a visibly better resolution of the discontinuities. Nevertheless, also for this problem we see that the

nonlinear LN1 and LN2 schemes yield nearly identical results. In Fig. 18, we compare the solutions along

the top boundary of the domain with a reference solution, given is in this case by a numerical solution
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obtained on a very fine one-dimensional mesh containing 50,000 cells with the first-order conservative finite

volume scheme of [67]. All the schemes reproduce correctly positions and strength of the shocks. The cap-
turing of all the discontinuities is monotone and very sharp in the case of the two limited schemes.

6.10. A two-phase shock–bubble interaction

The last test presented in the paper is a two-phase shock–bubble interaction. The initial solution

(sketched in Fig. 19) consists of a planar shock with MS = 3 moving into an undisturbed quiescent mixture

characterized by aR = 0.8 and pR = 105 Pa. On the right of the shock, a circular discontinuity in which the

void fraction jumps to a = 0.95 is present. The discontinuity is centered at x = 0.3 and y = 0 and its radius is
rb = 0.2 m. For symmetry reasons, only half of the interaction has been computed. A zoom of the grid used

for the computations is shown in Fig. 19. The mesh size is h � 1/200. The results are visualized in terms of

contours of the mixture density (94) in Fig. 20. Note that in each picture, we have plotted the solution ob-

tained with the nonlinear LN1 scheme on the top half and the one obtained with the nonlinear LN2 scheme

on the bottom half. From the figures we see the shock partially transmitted through the void fraction dis-

continuity and partially reflected as an expansion, while the contact itself is set into motion. Once the shock



Fig. 19. Two-phase shock–bubble interaction. Mesh (left) and initial solution (right).
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has traversed the whole circular discontinuity and joined the transmitted shock, the interface of the contact

folds, rolling-up into a symmetric structure. Also in this computation the LN2 scheme shows a smaller
numerical dissipation. Indeed, it gives a crisper resolution of the contact, its wavy structure (bottom pic-

tures) even giving the glimpse of an inviscid instability. The results of the LN1 scheme, however, are not
Limited  N2



extremely more dissipative, the scheme still providing a sharp resolution of this complex interaction. These

results compare qualitatively well to the ones presented in [68,69] for the Euler equation for a perfect gas

and to the ones obtained with different two-phase flow models and numerics in [70–72]. We remark however
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stability problems can be cured by the use of preconditioning techniques [10]. For all the singularities of the

scheme, not shared by the space–time variants proposed in [28–30,35], fixes can be designed [74,14,15,75].

Even so, the computational cost of the scheme remains. As seen in Sections 6.2 and 6.7, even if the linear N1

scheme shows a greater numerical dissipation compared to the linear N2 scheme, the differences between

the nonlinear LN1 and LN2 schemes are not as important as for the linear schemes. This suggests that sim-
pler schemes could be used as a basis for the limiting. Even if the N scheme is the least dissipative linear

first-order scheme, at the level of the limited schemes the differences in the results could be negligible.

For instance, one could choose a linear positive scheme which makes the minimum use of the quasi-linear

form of the equations, thus avoiding most of the problems arising from the singularities of the flux Jaco-

bians. The RD formulation of the Lax-Friederichs scheme studied in [41–43] is a good example of such a

scheme. This will certainly involve a more detailed study of the mappings used in the limiting. Concerning

the application to the computations of real-life flows, a very important issue to investigate is the behavior

of the schemes in presence of very strong contact discontinuities. In [44], it has been shown that, provided
that the pressure is used as a primary unknown, steady contacts can be resolved exactly if aligned with the

mesh. A more general investigation of this topic is needed, on the lines of the work done in [70,76]. Sim-

ilarly, a deeper investigation of the structure of the numerical shock profiles would be interesting, perhaps

following the ideas in [60,61]. Analytical studies on regular grids could help to make a link to previous re-

sults obtained in the context of Finite Volume discretizations.
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[45] T. Quintino, M. Ricchiuto, Á. Csı́k, H. Deconinck, Conservative multidimensional upwind residual distribution schemes for

arbitrary finite elements, in: ICCFD2 International Conference on Computational Fluid Dynamics 2, Sidney, Australia, July 2002.

[46] P. De Palma, G. Pascazio, D.T. Rubino, M. Napolitano, Multidimensional upwind cell-vertex schemes for quadrilaterals, in:

ECCOMAS CFD Conference 2004, Jyväskyl, July 2004.
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